A transit-amplifying population underpins the efficient regenerative capacity of the testis

نویسندگان

  • Claudia Carrieri
  • Stefano Comazzetto
  • Amit Grover
  • Marcos Morgan
  • Andreas Buness
  • Claus Nerlov
  • Dónal O'Carroll
چکیده

The spermatogonial stem cell (SSC) that supports spermatogenesis throughout adult life resides within the GFRα1-expressing A type undifferentiated spermatogonia. The decision to commit to spermatogenic differentiation coincides with the loss of GFRα1 and reciprocal gain of Ngn3 (Neurog3) expression. Through the analysis of the piRNA factor Miwi2 (Piwil4), we identify a novel population of Ngn3-expressing spermatogonia that are essential for efficient testicular regeneration after injury. Depletion of Miwi2-expressing cells results in a transient impact on testicular homeostasis, with this population behaving strictly as transit amplifying cells under homeostatic conditions. However, upon injury, Miwi2-expressing cells are essential for the efficient regenerative capacity of the testis, and also display facultative stem activity in transplantation assays. In summary, the mouse testis has adopted a regenerative strategy to expand stem cell activity by incorporating a transit-amplifying population to the effective stem cell pool, thus ensuring rapid and efficient tissue repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny.

Given our recent discovery that it is possible to separate human epidermal stem cells of the skin from their more committed progeny (i.e., transit-amplifying cells and early differentiating cells) using FACS techniques, we sought to determine the comparative tissue regeneration ability of these keratinocyte progenitors. We demonstrate that the ability to regenerate a fully stratified epidermis ...

متن کامل

Energy-Efficient Emplacement of Reversible DC Traction Power Substations in Urban Rail Transport through Regenerative Energy Recovery

Due to the high potential of urban rail transport systems as an effective solution to improve urban mobility services, these systems have faced an increasing demand in recent years. High capacity, reliability and absence of local emissions are some of the most promising advantages of these transportation systems. However, with the increase in capacity demands, energy costs and environmental ...

متن کامل

Transit-Amplifying Cells in the Fast Lane from Stem Cells towards Differentiation

Stem cells have a high potential to impact regenerative medicine. However, stem cells in adult tissues often proliferate at very slow rates. During development, stem cells may change first to a pluripotent and highly proliferative state, known as transit-amplifying cells. Recent advances in the identification and isolation of these undifferentiated and fast-dividing cells could bring new altern...

متن کامل

Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse

Spermatogenesis requires retinoic acid (RA) induction of the undifferentiated to differentiating transition in transit amplifying (TA) progenitor spermatogonia, whereas continuity of the spermatogenic lineage relies on the RA response being suppressed in spermatogonial stem cells (SSCs). Here, we discovered that, in mouse testes, both spermatogonial populations possess intrinsic RA-response mac...

متن کامل

Environmental impact assessment of bus rapid transit (BRT) in the Metropolitan City of Tehran

Bus rapid transit is an innovative, high capacity, lower cost public transit solution in metropolitan cities. Idea is to dedicate lanes for quick and efficient transport of passengers to their destinations. In the present investigation the environmental impact assessment of bus rapid transit  in Tehran metropolitan city is brought out. For this purpose bus rapid transit Lane No. 10 is investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 214  شماره 

صفحات  -

تاریخ انتشار 2017